
ParCFD2024
35th International Conference on Parallel Computational Fluid Dynamics

Sep 02-04 2024, Bonn, Germany

ASSESSING COMPUTATIONAL FLUID DYNAMICS ON
GPU USING PORTABLE LANGUAGES

Youssef Faqir-Rhazoui∗, Carlos Garćıa†

∗Eviden, R&D Department, Spain
e-mail: youssef.el@eviden.com

†Complutense University of Madrid, Spain
e-mail: garsanca@ucm.es

Key words: CFD, GPU, OpenMP, SYCL, CUDA, HIP

Abstract. Accelerators are essential for achieving optimal performance and energy
efficiency in computing. However, market segmentation often leads to language lock-ins,
limiting flexibility across accelerators and increasing development costs. To address this,
alternatives like SYCL or OpenMP have emerged, enabling code portability across diverse
hardware platforms.

The study reveals that while both OpenMP and SYCL demonstrate comparable perfor-
mance to native languages on NVIDIA and Intel GPUs, SYCL significantly outperforms
OpenMP on AMD platforms. These findings underscore the potential of multi-device and
open languages in enhancing performance and reducing development overhead in parallel
CFD simulations.

1 Introduction

Hardware acceleration is a crucial component in the quest for enhanced performance
and energy efficiency. However, due to market segmentation, many accelerators (e.g.,
GPUs) suffer from language lock-ins (e.g., CUDA, HIP), restricting the use of the same
language across multiple vendor accelerators [1].

redMoreover, CI/CD pipelines would be compromised by these practices, as main-
taining multiple pipelines for each architecture would be error-prone and increase the
complexity of the process. CD would require maintaining multiple implementations of
the same algorithm in different languages. CI would also be tied to each language, as
each language is tied to its own compiler [2].

To address these issues, various alternatives have emerged, such as OpenCL, SYCL, or
OpenMP. These languages have the capability to run on multi-vendor accelerators such
as CPUs or GPUs while using the same code.

On the other hand, Computational Fluid Dynamics (CFD) is a powerful tool for sim-
ulating complex environments such as turbomachinery, aerodynamics, or heat transfer.
CFD simulations were traditionally performed on CPUs and distributed across clusters
using MPI. Due to the inherently parallel nature of CFD, GPU acceleration is key to

Youssef F.R. and Carlos G.

leveraging performance and energy efficiency. redHowever, some areas of CFD, such as
particle simulation, still remain mostly implemented on the CPU [3].

This paper presents a suite of benchmarks for testing CFDs on NVIDIA, AMD, and
Intel GPUs. We compare the native language of each platform with the portable languages
OpenMP and SYCL.

The following paper is structured as follows: In Section 2, we present the environmental
conditions and methods used in the experiment. Section 3 describes the results obtained
redand discusses them.

2 Methods

The experiments were conducted using the GPUs listed in Table 2. The selected GPUs
cover NVIDIA, AMD and Intel architectures.

While the table specifies the driver used for each GPU, it is worth mentioning that the
V100 employs the CUDA 12.4 toolkit, the RX 6700XT is powered by ROCm 5.4.3, and
the Max 1100 is integrated with oneAPI 2024.1.

Transitioning to portable languages (OpenMP and SYCL), it is worth distinguishing
each one. While OpenMP is supported in all the previously mentioned toolkits. SYCL is
supported by the oneAPI’s compiler and is suitable for NVIDIA and AMD GPUs.

NVIDIA Tesla V100 AMD RX 6700 XT Intel Max 1100
Frecuency
(GHz)

Up to 1.38 Up to 2.58 Up to 1.55

Cores 80 SM 40 CU 56 Xe cores
Perf. (FP64) 7.06 TFLOPS 0.825 TFLOPS 22.22 TFLOPS

Driver 550.54.14 5.18.3
23.52 (ocl)
1.3 (level0)

Table 1: Specifications of the GPU used in the experimentation.

Regarding the benchmarks, we employed a set of eleven CFDs combined with common
CFD equations. For the sake of space, we are not providing detailed descriptions and
parameters of the benchmarks here. Instead, we strongly recommend that readers refer
to the repository where this information is provided.1

redConcerning the benchmark implementation of each language and how we keep them
as similar as possible, the baseline implementation was CUDA. Translating the code
to HIP was achieved using the HIPIFY tool.2 Since OpenMP syntax is quite different
from the other employed languages and there is no official tool to port it, the port was
done manually to be as similar as possible to the CUDA code. Once the OpenMP code
was delivered, it was compiled for each architecture using the vendor compiler for that
architecture. Finally, SYCL code was mainly ported using the SYCLomatic tool.3 In this
case, SYCL code was always compiled for all architectures using the oneAPI compiler.

1The repository used can be found at: https://github.com/A924404/cfd-bench
2https://github.com/ROCm/HIP?tab=readme-ov-file
3https://github.com/oneapi-src/SYCLomatic

https://github.com/A924404/cfd-bench
https://github.com/ROCm/HIP?tab=readme-ov-file
https://github.com/oneapi-src/SYCLomatic

Youssef F.R. and Carlos G.

3 Experimental Results and Results Discussion

3.1 Results

Reviewing Figure 1 for the Tesla V100, CUDA serves as the native benchmark. redSYCL
fails to run the miniWeather benchmark due to an issue related to its interaction with
MPI. In the case of OpenMP, the d3q19-bgk test was not implemented in the original
suite.

SYCL averaged 91% of CUDA performance, while OpenMP reached 80%. Depending
on the benchmark, these percentages may vary.

adv
burger

d2q9-bgk

d3q19-bgk

heat2d
laplace

laplace3d

lid-driven-cavity

miniWeather

sph wsm5

100

102

104

106

108

Ti
m

e
(s

)

CUDA
SYCL
OpenMP

Figure 1: NVIDIA Tesla V100 performance comparison across CUDA, OpenMP, and SYCL.

Figure 2 shows results from the AMD 6700 XT. The native implementation for AMD
GPU is HIP. While both HIP and SYCL ran all benchmarks, OpenMP failed the lid-
driven-cavity testred, the main issue found relies on memory allocation. While HIP and
SYCL are able to allocate the amount of memory required by the benchmark, OpenMP
do not.

The results show poor performance on AMD architecture. OpenMP achieves only
51% of HIP times on average, while SYCL reaches up to 66% of native performance. The
standard deviation (SD) for OpenMP is 44% and for SYCL it is 35%. SYCL’s performance
on AMD is primarily affected by the adv and miniWeather tests, but removing them
increases performance to 81% with an SD of 19%. OpenMP’s issue is spread across all
benchmarks.

Finally, the Intel Max 1100 results are shown in Figure 3. SYCL runs on two backends:
Level0 and OpenCL, both maintained by Intel with no notable differences expected.

redIn this instance, all three implementations failed to execute the miniWeather mini-
app due to MPI call incompatibilities in the system, unrelated to the languages used, but
rather due to the absence of an MPI installation. Additionally, the authors did not have

Youssef F.R. and Carlos G.

adv
burger

d2q9-bgk

d3q19-bgk

heat2d
laplace

laplace3d

lid-driven-cavity

miniWeather

sph wsm5

100

102

104

106

108

1010

Ti
m

e
(s

)

HIP
OpenMP
SYCL

Figure 2: AMD RX 6700 XT performance comparison across HIP, OpenMP, and SYCL.

root access to the system employed for Intel GPUs.
Regarding the numbers and SYCL, both backends are virtually equivalent in perfor-

mance, achieving an average speedup of ×1. Transitioning to OpenMP, it shows a slight
speedup over the SYCL equivalents, averaging ×1.05.

adv
burger

d2q9-bgk

d3q19-bgk

heat2d
laplace

laplace3d

lid-driven-cavity

miniWeather

sph wsm5

10 2

100

102

104

106

108

Ti
m

e
(s

)

SYCL (Level0)
SYCL (OpenCL)
OpenMP

Figure 3: Intel Max 1100 performance comparison across SYCL(Level0), SYCL(OpenCL), and OpenMP.

3.2 Discussion

redOpen and portable languages such as SYCL and OpenMP are promising in scenarios
where changing GPUs necessitates completely altering the underlying source code and
CI/CD pipelines due to vendor lock-ins.

Youssef F.R. and Carlos G.

redIn performance results, SYCL has shown performance comparable to NVIDIA’s
(10% difference). However, when moving to AMD GPUs, the performance is degraded
due to the immaturity of the language on this platform. SYCL is also a native language
for Intel GPUs, allowing for highly optimized performance.

redRegarding OpenMP, we found mixed results. On Intel platforms, there is no perfor-
mance loss, while on NVIDIA, the gap is approximately 20%, and on AMD, it is around
50%.

redBoth SYCL and OpenMP are ultimately translated into native assembly code that
the GPU executes. Therefore, the efficiency of translating high-level code to low-level
code is crucial for achieving performance. Table 3.2 shows the number of assembly lines
into which the target languages are translated.4 Generally, more lines imply more time for
the GPU to run them. For CUDA PTX, SYCL employs 27% more code, while OpenMP
uses 77% more. For Amdgcn, SYCL uses 45% more assembly code, and OpenMP uses
up to 82% more.

CUDA HIP SYCL OpenMP
Cuda ptx 33,455 - 46,259 144,999
Amdgcn - 23,757 43,321 132,692

Table 2: redTotal assembly code lines by language and architecture.

Acknowledgment

This paper is part of the HIDALGO2 project, co-funded by the European Union under
grant agreement number: 101093457.

REFERENCES

[1] M. Breyer and et. al., “A comparison of sycl, opencl, cuda, and openmp for massively
parallel support vector machine classification on multi-vendor hardware,” in Proceed-
ings of the 10th International Workshop on OpenCL, IWOCL ’22, (New York, NY,
USA), Association for Computing Machinery, 2022.

[2] P. Rostami Mazrae, T. Mens, M. Golzadeh, and A. Decan, “On the usage, co-usage
and migration of ci/cd tools: A qualitative analysis,” Empirical Software Engineering,
vol. 28, no. 2, p. 52, 2023.

[3] A. Zhu, Q. Chang, J. Xu, and W. Ge, “A dynamic load balancing algorithm for
cfd–dem simulation with cpu–gpu heterogeneous computing,” Powder Technology,
vol. 428, p. 118782, 2023.

4We did not include the same information for the Intel GPU because we could not generate the
assembly codes. The required tool needs to be installed with root access, which we do not have.

	Introduction
	Methods
	Experimental Results and Results Discussion
	Results
	Discussion

