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Abstract. In the rapidly evolving landscape of IoT-Edge-Cloud con-
tinuum (IECC), effective management of computational tasks offloaded
from mobile devices to edge nodes is crucial. This paper presents a
Distributed Reinforcement Learning Delay Minimization (DRL-DeMi)
scheme for IECC task offloading. DRL-DeMi is a distributed framework
engineered to tackle the challenges arising from the unpredictable load
dynamics at edge nodes. It empowers each edge node to independently
make offloading decisions, optimizing for non-divisible, latency-sensitive
tasks without reliance on prior knowledge of other nodes’ task models
and decisions. By framing the problem as a multi-agent computation
offloading scenario, DRL-DeMi aims to minimize expected long-term la-
tency and task drop ratio. Adhering to IECC requirements for seamless
task flow within the Edge layer and between Edge-Cloud layers, DRL-
DeMi considers three computation decision avenues: local computation,
horizontal offloading to another edge node, or vertical offloading to the
Cloud. Integration of advanced techniques such as long short-term mem-
ory (LSTM), double deep Q-network (DQN), and dueling DQN enhances
long-term cost estimation, thereby refining decision-making efficacy. Sim-
ulation results validate DRL-DeMi’s superiority over baseline offloading
algorithms, showcasing reductions in both task drop ratio and average
delay.

Keywords: IoT-edge-cloud continuum (IECC), Reinforcement learn-
ing, Resource allocation, Task offloading.
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1 Introduction

1.1 Shifting to IoT-Edge-Cloud Continuum

The IoT-Edge-Cloud Continuum (IECC) represents a transformative shift in
distributed computing [5], integrating edge computing with cloud services to
deliver low-latency, scalable computing [13]. IECC leverages the proximity of
edge nodes to end-users, reducing latency, conserving bandwidth, and enabling
real-time data processing and analytics [5]. Key components include edge nodes,
cloud data centers, and an orchestration layer for resource management and task
distribution.

As we approach the 6G era, IECC is expected to meet the high demands of
time-sensitive applications [12] and the massive traffic from IoT devices [15]. The
6G network aims to provide ultra-reliable low-latency communication (URLLC),
enhanced mobile broadband (eMBB), and massive machine-type communica-
tions (mMTC) [1,11]. IECC will be crucial in this context, enabling dynamic
and adaptive task offloading to optimize computational resources and meet the
stringent requirements of 6G networks.

1.2 Task Placement within IECC

Task offloading is essential in the IECC architecture, dynamically allocating
tasks to the most suitable computing layer [8]. This optimizes resource utilization
and minimizes delay, crucial for time-sensitive applications. IECC supports both
vertical and horizontal task offloading, allowing tasks to be distributed not only
from edge to cloud but also among edge nodes. This flexibility ensures efficient
resource usage and enhances system resilience, meeting the evolving needs of
IECC.

Task offloading in mobile edge and edge-cloud computing has been widely
studied [10]. Dinh et al. [2] proposed an optimization framework for offloading
from mobile to edge devices to minimize latency and energy consumption. Li et
al. [7] used clustering to deploy mobile edge servers, reducing completion time
and power consumption. Ullah et al. [14] applied DRL for optimizing offloading
and resource allocation, improving resource utilization. Liu et al. [9] introduced a
fast task offloading approach in edge-cloud environments, achieving near-optimal
solutions with low overhead.

1.3 Paper Summary

While existing works highlight the benefits of efficient task offloading, they of-
ten assume known task models and conventional vertical task flow, not fitting
with IECC principles. In this work, we propose the DRL-DeMi (Deep Reinforce-
ment Learning for Delay Minimization) scheme to address these limitations.
DRL-DeMi enables decentralized offloading decisions without knowledge of task
models or other nodes’ decisions, targeting a multi-agent system [3,4]. Each
computing node uses a double and dueling DRL model to optimize offloading
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decisions, minimizing task latency and drop probability. The main contributions
of this work are: (i) DRL-DeMi allows edge nodes to autonomously make of-
floading decisions, suitable for dynamic IECC environments, without requiring
knowledge of task models or global observability, (ii) DRL-DeMi supports both
vertical and horizontal offloading, facilitating task flow within and between lay-
ers of the multi-agent computing architecture, (iii) Initial numerical validations
demonstrate that DRL-DeMi outperforms baseline algorithms, reducing task
drop rates and average delay, thus optimizing processing resource utilization in

IECC.

2 System Model

This section describes the system model elements considered for the development
of DRL-DeMi scheme.

2.1 DRL-DeMi System Architecture

The DRL-DeMi framework operates within the IoT-Edge-Cloud network model,
comprising K Edge Agents (EAs) and a single Cloud entity, facilitating efficient
task management across multiple IoT regions. Each EA k processes tasks lo-
cally or offloads them horizontally to another EA or vertically to the Cloud.
Decisions are made autonomously by DRL models embedded within each EA,
aiming to minimize the Task Computation Delay (TCD) and Task Drop Rate
(TDR). The network is augmented with M Edge Controllers (EDs) for monitor-
ing and facilitating inter-controller communication for data sharing. We focus
on a time-slotted episode 7 = {1,2,...,T} (each time slot has A sec duration),
maintaining communication via wireless links between IoT devices and base sta-
tions and wired fronthaul (FH) links connecting base stations to EAs, with all
EAs linked to the Cloud via the Internet. The communication assumptions can
be safely changed without loss of generality.

Fig. 1 depicts a general IECC system model engaging K DRL-DeMi agents
in which, when a new task is arrived from an IoT zone, the respective EA is
assisted by a local DRL-DeMi model to make a decision. The task placement
decisions can enforce the task to be locally computed, vertically forwarded to
Cloud, or horizontally offloaded to another EA.

2.2 Task Representation and Decision Process

In the DRL-DeMi system model, each EA k is assigned a unique task identifier
ug(t) (integer) upon task arrival at time ¢. Task arrival is indicated by a binary
variable x(t) (1 if task arrived at ¢). Tasks have discrete sizes drawn from a set
H, associated with processing densities py(t) (CPU cycles per bit) and deadlines
¢r, (time slots). The offloading decision process is two-step and is achieved by two
decision-maker (DM) modules: DM; determines local computation or offloading,
and, if DM; decides offloading, then DM, selects the offloading destination.
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Fig. 1. A multi-agent and single-Cloud IECC system. Each Edge Agent employs a
DRL-DeMi model to make a delay-aware task placement decision.

2.3 Task Queuing Mechanisms

Local Computing at Internal Queues: Tasks designated for local processing
are stacked in the FIFO internal queue (IQ) of their respective EA. Each EA k
has a CPU with fixed capacity f,g 9 Hz for processing local tasks. The completion
time slot z/;,iQ (t) for task uy(t) is determined, with wéQ (t) = 0if no task is queued
at time t. The waiting time w,ﬁQ (t), ensuring non-negativity, is computed as:

wt(0) = mx {0, ax(u{2(0) ~ 141 1)

The completion time slot wéQ (t), indicating task completion or timeout, is
given by:

Q) = min{t +wl) + [W] — Lt + (t) — 1} 2)

Host Computing at External Queues: Each EA has K — 1 external queues
(EQs) for processing external tasks from other EAs, while the Cloud has K
EQs for hosting tasks from all EPs. Each EQ 7 at node n serves as the offloading
destination for EA 4. Tasks offloaded by EA k and arriving at node n at time ¢ are
stacked in the k" EQ at t+1. Each task receives a unique ID wuy. , () = ug(t' < t)
upon queuing (at time t). The length of EQ k at node n is updated as:

A FEQ
oo ©

where my, ,(t) is the number of bits dropped by EQ k of node n at the end of
time slot ¢. This equation recursively updates the EQ length at time ¢ as the
previous EQ length at time ¢ — 1 plus the size of new task arrived at time ¢,
minus the sum of all bits dropped and processed at time t¢.

Lo (t) = maX{O, lom(t = 1) + T (£) — Mg (t) —
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Transferring Tasks with Forwarding Queue Each EA has another FIFO
forwarding queue (FQ) for offloading tasks. When EA k selects task wuy(t) for
offloading, the FQ is connected to the destination EQ of another EA or Cloud
via a wired link. The waiting time w,fQ(t) and completion time slot w,fQ(t) of
task stored in FQ are computed similarly to the IQ case, ensuring timely task
forwarding:

wf2(0) = mox {0 (20} ~ 41 ()

@) () .
v =min{t+ w0 + [ 3 WW —Lt+a -1} (5)
n#k S

Here, d,(le = 1 (decision made by decision-maker 2) indicates offloading from
EA k to node n (EA or Cloud), and Ry, ,, denotes the data rate (bits per sec) for
offloading. Data rate can be either equal to Ry (EA-to-Cloud transfer) or Ry
(EA-to-EA transfer).

3 DRL-DeMi Algorithm

3.1 Task Placement Problem Formulation

Each EA agent faces the task of deciding whether to process tasks locally, offload
them to another peer EA agent, or send them to the Cloud. The key challenge
lies in formulating a cost function that reflects the agents’ objective: making
offloading decisions to minimize both long-term computation delay (TCD) and
the probability of task drops (TDR), ensuring efficient and reliable task handling
in a dynamic computational environment.

At time slot ¢ € T, the global system state is denoted by & = {S1,...,Sk},
where S, € S denotes the local state of EA k € K. Within an episode, each EA
transitions through states {sy(1),sx(2),...,s%(T)}. For a given ¢, EA k observes
the local environment state s (t) and takes action ay(t). This action leads to a
new state s;(t + 1) and a scalar reward ry(t + 1) reflecting the action’s benefit.
The state of EA k at ¢ is defined as:

se() = [me(0), wi (1), w2 (1), 174 (¢~ 1), 1(1)] (6)

Here, lkEQ (t —1) is a vector containing EQ lengths for the EQs hosting tasks
of EA k, and L(¢) records previous load (i.e. number of queues containing at
least one task) values of computing nodes. EA k selects action aj(¢) based on

sk (t):

a(t) = [ (8), d%) (), n] (7)
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This two-step decision determines whether to offload (d;ﬂl)(t) = 0 for offload-

ing) and the destination (d,(fZL (t) = 1 for offloading and n is the destination EA).
After taking ay(t) from sk (t), the received reward ry(t) is:

0, No task arrived
,ﬁQ(t) —t+1, Local computing
ri(t) = D d,(f;(t) (W,n(T) —t+ 1), Offloading ®
k#n
c, Task thrown

Defining 7 as the policy of EA k, which maps the states to actions, means
that optimizing 7y, for EA k involves minimizing the expected cumulative reward:

T = argminE{Z At -rk(t)‘wk} 9)
Tk teT
where expectation is taken over random arrivals and decisions, and ~ is a
discount factor. This tells us that the optimal policy 7}, of EA k is the one that
ensures that the long-term delay cost is minimized.

3.2 DRL-DeMi Algorithmic Scheme

DRL-DeMi aims to facilitate decentralized task offloading, jointly minimizing
TCD and TDR. Each EA employs a DQN trained using double and dueling
Q-learning principles for stabilizing learning. At time ¢, the DQN takes s (¢) as
input, producing @Q-values for all actions. Training involves experience replay and
two networks: the action-selecting Q-model and the reward-estimating Target Q-
model. Fig. 2 demonstrates the Neural Network architecture used for DRL-DeMi.

<>
Task size >
—>
Waiting time at 1Q \ —>
Waiting time at FQ
— + > Q-values
Length of EQ at 7-/
—>
Predicted /
Previous (7 oy | Predicted
Load at EQs ﬂJ Load = |
Input FC A&V  Output

Layer Layers Layer  Layer

Fig. 2. Single-agent DRL-DeMi model architecture.

The DRL-DeMi algorithm trains K DQN models to assist decision-making for
each EA, aiming at a distributed task offloading mechanism within the IECC.
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Its goal is to minimize task latency and task drops. The DRL-DeMi training
process for each EA k begins with the initialization of the policy Q-network (with
parameters 6;) and the target Q-network (#,) with random weights. At each
time slot ¢, the EA observes the environment and forms the current state si(t).
Based on this state, the policy Q-network selects an action ay(t) (random action
or action with the minimum Q-value). The action is then executed, resulting in
a transition to si(t 4+ 1) and receiving an immediate cost Cj(t). This transition
(si(t), ar(t), Cr(t), sk(t + 1)) is stored in a replay buffer with capacity Nr. A
mini-batch of transitions is sampled from the replay buffer to update the Q-
network. For each sampled transition, the Q(-) and target Q-values are computed
using both networks and the double Q-learning equation [6]. The policy Q-
network is updated by minimizing the loss between the predicted and the target
Q-value. The target (Q-model weights are updated every N_jone episodes to slowly
track the policy network, following the update rule 65 < 765 + (1 —7)6;, where
7 is an update constant in [0, 1]. This process iterates over multiple episodes and
time slots ¢ until convergence, ensuring continuous learning and adaptation of
each DRL-DeMi agent to minimize long-term discounted cost.

4 Simulations

In this section, we numerically assess the performance of the DRL-DeMi scheme
in an multi-agent setup. We first discuss the training dynamics and stabilization
of DRL agent hyperparameters, then provide a comparative analysis against
existing baseline methods. We consider the following system parameters: Task
arrival probability is set at 0.7, with horizontal and vertical data rates at 10
Mbps and 20 Mbps, respectively. Task sizes vary between 2 — 5 bits, and tasks
have a deadline of 10 time slots. The task processing density is 0.297 cycles/bit.
The system includes 3 EA. The CPU frequencies are 2.5 GHz for the IQs, 5 GHz
for EQs, and 30 GHz for the Cloud.

4.1 DRL-DeMi Training

The training involves 12000 episodes, each comprising 100 time slots of 0.1 sec-
onds each. The Q-network consists of three hidden layers with 20 neurons each,
optimized using Adam and MSE as the loss function. The target network is up-
dated every 2000 iterations. The LSTM model uses a lookback window of 10
steps and one hidden layer with 20 neurons. The replay memory size is 10000
samples, with a task drop penalty of 40. The batch size for training is 64 samples.

Fig. 3 shows the learning curve (in terms of cumulative reward) of the DRL-
DeMi scheme for various learning rates and discount factors. Considered neg-
ative, reward ideally reaches zero, hence the increasing TCL curve. A learning
rate of a = 0.0001 proved optimal, offering a balance between rapid learning and
minimal overshoot, effectively minimizing the task delays. On average, DRL-
DeMi achieves an 8-slot latency for task completion, resulting in about a 5%
drop rate under the given system settings. The value of v = 0.99 was proved
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Fig. 3. The influence of learning rate (a) and discount factor (b) on DRL-DeMi reward
convergence for three agents.

the optimal discount factor, meaning that DRL-DeMi agents prefer future re-
wards to optimize the task placement policy, rather than following actions with
immediate rewards (low values of 7).

4.2 DRL-DeMi Validation

Considering the optimally-configured DRL-DeMi network at each EA, this sec-
tion quantifies the performance of the overall DRL-DeMi scheme. To evaluate the
scalability and task traffic impact on the DRL-DeMi scheme, Fig. 4a shows the
relationship between Reward (i.e. TCD) and the number of EAs under varying
task arrival probabilities. The results indicate that reward slightly worsens as the
number of EAs increases. This suggests that although additional EAs enhance
computational capacity, they also introduce greater coordination complexity and
data transmission delays among agents, due to high traffic. Furthermore, there
is a clear correlation between higher task arrival probabilities and increased de-
lays. At lower probabilities, the system handles tasks more efficiently due to lower
resource demands and less frequent decision-making by the DRL agents. How-
ever, as task arrival probability rises, the system becomes increasingly strained,
resulting in slower task execution.

For validation purposes, DRL-DeMi was also compared against baseline meth-
ods. We considered the following schemes: (i) Random: Each EA offloads tasks
randomly, with equal probability for local execution, vertical or horizontal of-
floading. When offloading horizontally, the destination EA is chosen randomly
from the available EAs. (ii) Full Local: All tasks are executed locally by each
EA. (iii) Full Offloading: Each EA offloads all tasks to a randomly chosen des-
tination. (iv) Round-Robin: Offloading decisions follow a fixed order, cycling
through all possible destinations, including local execution.
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Fig. 4. a. The impact of the task arrival probability on the DRL-DeMi performance
for increasing number of agents. b. Performance comparison of DRL-DeMi against
baselines for different task arrival probabilities.

Evidently from Fig. 4b, DRL-DeMi outperformed the baselines, mainly due
to its adaptive learning approach, allowing it to make more efficient offloading
decisions based on real-time system states and task demands. Unlike static or
random strategies, DRL-DeMi continuously optimizes task allocation by pre-
dicting long-term rewards, thereby minimizing latency. Also, Round-Robin and
Random schemes showed better task placement than the other two deterministic
methods, given that they both allow some degree of non-static decisions, thus
preventing overloading. Overall, the use of DRL enables dynamic resource man-
agement and efficient utilization of computational resources, leading to superior
performance in terms of task completion latency and overall system throughput.
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